Типы вакцин – 2.Вакцинопрофилактика и вакцинотерапия. Основные принципы их использования. Аутовакцины, приготовление, контроль качества, назначение.

2.1. Типы вакцин

Единой, общепринятой, классификации вакцин нет. Ос­новными критериями для классификации противовирусных вакцин могут быть: особенности биологических свойств, ко­личество видов (типов) и жизнеспособностей (способностей к репродукции) штаммов, включенных в состав вакцин, а так­же технология их изготовления.

В зависимости от биологической системы, используемой

для культивирования вакцинного штамма, различают ткане­вые, лапинизированные, авианизированные и культуральные вакцины.

2.1.1. Тканевые вакцины в своей основе содержат какую- либо ткань сельскохозяйственных животных, в которой «раз­ множился» и накопился вакцинный штамм. Например, анти- рабическую вакцину для ветеринарных целен готовят из мозговой ткани овец, зараженных пастеровским «фиксиро­ ванным» штаммом вируса бешенства.

Количество таких- вакцин постепенно сокращается. В настоящее время их 5 (против бешенства и против оспы овец, коз и свиней).

  1. Лапинизированные вакцины являются разновидно­ стью тканевых, их готовят из тканей крольчат, зараженных’ адаптированным к ним вакцинным штаммом. В настоящее время выпускается 7 таких вакцин, главным образом против ящура и классической чумы свиней,

  2. Авианизированные (эмбрион вакцины) готвят из экстраэмбриональных жидкостей и тканей развивающихся эмбрионов птиц, зараженных вакцинным штаммом. Наибо­ лее часто для этих целей используют эмбрионы кур, реже уток и японских перепелок. У нас в стране выпускают 13 эмбрионвакцин против классической чумы (гриппа) птиц, болезни Ньюкасла, инфекционного ларинготрахеита, инфек­ ционного бронхита, оспы птиц и вирусного гепатита утят.

2.1.4. Культуральные вакцины готовят из зараженных переживающих тканей или культур клеток, при этом чаще применяют роллерный (ротационный) или суспензионный (реакторный) метод культивирования тканей и клеток. В последние годы количество таких вакцин возрастает, у нас в стране для ветеринарных целей выпускают 30 культураль- ных вакцин (против ящура, бешенства, болезни Ауески, бо­ лезни Тешена, чумы кр. р. скота, классической чумы свиней, чумы плотоядных, вирусного энтерита норок, инфекционного ринотрахеита и парагриппа-3 кр. р. скота, трансмиссивного гастроэнтерита свиней, контагиозного пустуллезного стома­ тита (дерматита) овец и коз, миксоматоза кроликов, болезни Ньюкасла, болезни Марека и вирусного гепатита утят).

В зависимости от видовой принадлежности вакцинного штамма различают гомологические и гетерологические проти­вовирусные вакцины.

2.1.5. Гомологические вакцины готовят из того вида ви­ руса, против которого предполагается создать иммунитет.

i

Например, вакцины против бешенства готовят из ослаблен­ных, атТенуированных штаммов вируса бешенства. Абсолют­ное большинство выпускаемых вакцин — гомологические.

2.1.6. Гетерологические вакцины готовят из вирусов дру­ гого вида, но имеющих в своем составе аналогичные анти­ гены и обладающие перекрестной иммуногенностью (явле­ ние параиммунитета). Например, вакцина против болезни Марека готовится из вируса герпеса индеек, но он защищает кур от болезни Марека.

В зависимости от количества типов или видов возбуди­телей, включенных в состав вакцины, различают монова­лентные, поливалентные, ассоциированные и смешанные вак­цины.

2.1.7. Моновалентные вакцины содержат антигены одного

типа (вида) вируса.

  1. Поливалентные (бивалентные, трехвалентные) вак­ цины готовят из нескольких серологических, типов одного вида вируса. Например, трехвалентная противоящурная фор- молзакцина из культурального вируса ящура А-О-С пред­ ставляет собой смесь трех моновалентных вакцин.

  2. Ассоциированные вакцины содержат антигены раз­ ных видов возбудителей. Например, вакцина «Бивак» против инфекционного ринотрахеита и парагриппа-3 кр. р скота, «Тетравак» против чумы, аденовироза, инфекционного гепа-

•тита и парвовирусного энтерита собак.

2.1.10. Смешанные вакцины являются разновидностью ассоциированных, представляют из себя смесь вирусных и бактерийных антигенов, например, вакцина против чумы пло­ тоядных,» ботулизма и вирусного энтерита норок.

Б зависимости от жизнеспособности (способности к ре­продукции) вируса, входящего в состав вакцины, все проти­вовирусные вакцины подразделяются на живые и инакти-вированные (убитые).

2.1.11. Живые вакцины готовят из селекционированных авирулентных или слабовирулентных естественных (выделен­ ных из природы) или из аттенуированных (искусствено ос­ лабленных) штаммов вирусов. Их называют еще «вирусвак- цинами». В настоящее время в ветеринарной практике при­ меняется 37 живых противовирусных вакцин.

2.1.12. Инактивированные (убитые) вакцины получают путем размножения производственного эпизоотического штам­ ма (неослабленного возбудителя) с последующей инактива-

цией (обезвреживанием) его с помощью физических или хи­мических факторов.

Понятие «убитые» вакцины, перенесенное из классической микробиологии, применительно к противовирусным вакцинам в какой-то мере условно: в большинстве ннактнвированных. вакцин обнаруживают жизнеспособных вирионов» кроме того, при совместном пребывании в клетке нескольких вирионов с поврежденным геномом в результате генетических и неге­нетических взаимодействий возможна реактивация, т. е. вос­становление жизнеспособности вируса.

В животноводстве,, птицеводстве и звероводстве применя­ется 19 инактивированных вакцин.

В зависимости от физического состояния вакцины могут быть сухими и жидкими.

Наиболее часто живые вакцины выпускают в сухом виде. Все вышеперечисленные разновидности противовирусных вак­цин можно считать «полновирионными», т. к. они содержат живых или убитых вирионов, включая геном (РНК или ДНК), белки и оболочки вируса.

В последние годы в практику начинают внедряться хи­мические противовирусные вакцины.

2.1.13. Химические вакцины можно считать разновидно­стью инактивированных, но они не содержат в своем составе генома вируса, поэтому они безопасны.

Различают две разновидности химических противовирус­ных вакцин: сплитвакцины и субъединичные вакцины.

  1. «Сплитвакцины» готовят из продуктов химическо­ го расщепления вирионов, включая в состав вакцины все антигены, освобожденные от генома и липидов за счет чего снижается пирогенность вакцины.

  2. Субъединичные вакцины содержат в своем со­ ставе только протективный антиген, против которого в орга­ низме вырабатываются вируснейтрализующие антитела.

Субъединичные вакцины получают путем выделения не­обходимого антигена из разрушенных вирионов. При ряде инфекций (болезнь Марека, лейкоз) субъединичные вакцины готовят из вирусспецифических гликопротеидов клеточных мембран.

Высокая стоимость субъединичных вакцин, полученных традиционными методами (культивирование, очистка, кон­центрация вируса, расщепление вирионов и выделение про-тективного антигена) сдерживает их широкое применение, однако в последние годы.осваивается технология двух новых

разновидностей субъединичных вакцин: генноинженерных и синтетических.

2.1.14. Генноинженерные вакцины представляют из себя очищенные вирусные белки, полученные с помощью клониро­ ванных вирусных ДНК, при этом в качестве продуцента протективного антигена наиболее часто используют микро­ организмов (эшерихии, сенная бацилла’ дрожжи), в плаз- миду которых «встраивают» ген, ответственный за синтез протективного антигена. Полученный трансформированный штамм культивируют в реакторах, он интенсивно нараба­ тывает нужный полипептид, который выделяет из бактери­ альной культуры после разрушения микроорганизмов с по­ мощью методов молекулярной биологии (изопикническое

и скоростное зональное центрифугирование в комбинации с иммуноафииной хроматографией).

Выход протективного антигена довольно высокий. Напри­мер, из трансформированной культуры эшерихии доля про­тективного антигена вируса ящура составляет 17% от общего бактериального белка. Таким путем за рубежом получены вакцины против ящура, вирусного гепатита В, гриппа, бе­шенства, герпеса.

Б 80-е годы появились новые подходы к созданию проти­вовирусных вакцин — вставки генов

ч кодирующих синтез протективных антигенов, в геном другого аттенуированного вируса. Так, в 1984 г. в США в геном вируса осповакцины «встроили гены, ответственные за синтез поверхностных анти­генов вируса гриппа и гепатита, и такой рекомбинаннт защи­тил экспериментально зараженных от оспы, гриппа и гепатита.

Аналогичные работы проводятся и в нашей стране.

2.1.15. Синтетические вакцины получают путем искусст­ венного синтеза полипептидов с определенным набором и последовательностью чередования аминокислот. Такой син­ тетический пептид должен соответствовать главной антиген­ ной детерминанте вируса, выполняющей функции протектив­ ного антигена. Для получения синтетической вакцины его связывают с Т-независимым носителем — полимерным анти­ геном, который может вызывать В-клеточный иммунный от­ вет и без участия Т-лимфоцитов.

Имеются основания считать, что будущее за генноинженер-ными и синтетическими вакцинами.

Весьма желательно, чтобы тип вакцины был четко отра­жен в ее названии, что помогло бы сразу осмыслить суть препарата. К сожалению, на сегодняшний день отсутствует

общепринятая научно обоснованная классификация вакцин и в названиях вакцин встречается много досадных недора­зумений.

С практической точки зрения ветеринарным специалистам наиболее важно знать особенности изготовления, контроля и применения живых и инактивированных противовирусных вакцин.

Противовирусные вакцины. Типы вакцин

Вакцина представляет собой биологический препарат, приготовленный из возбудителей инфекции, лишенных патогенных свойств, но сохранивших иммунногенные свойства.

При изготовлении вакцин для получения вируссодержащего материала используют живые биологические системы, чувствительные к вирусам: животных, куриные эмбрионы, культуры клеток.

В зависимости от биологической системы, используемой для культивирования вакцинного штамма вируса, различают тканевые, авинизированные, культуральные вакцины.

Тканевые вакцины в своей основе содержат какую-либо ткань животных, в которой размножался и накапливался вакцинный вирус. Например, вакцину против бешенства готовили из мозговой ткани овец, зараженных пастеровским вирусом-фикс бешенства, лапинизированную вакцину против ящура — из тканей крольчат, зараженных адаптированным к ним вакцинным штаммом. Количество тканевых вакцин постепенно сокращается.

Авинизированные вакцины готовят из эмбриональных жидкостей и тканей развивающихся эмбрионов птиц, зараженных вакцинным штаммом. Наиболее часто для этих целей используют эмбрионы кур, реже уток и японских перепелов, например, для получения вакцин против гриппа птиц, болезни Ньюкасла, гепатита утят и др.

Культуральные вакцины готовят из зараженных культур клеток или переживающих тканей, при этом применяют роллерный (используют вращающиеся бутыли) или суспензионный (глубинный — используют реакторы) методы культивирования клеток и тканей. Это наиболее перспективный и прогрессивный метод получения вакцин. Таким методом готовят, например, вакцины против инфекционного ринотрахеита, парагриппа-3 крупного рогатого скота, ящура, чумы крупного рогатого скота и др.

В зависимости от видовой принадлежности вакцинного штамма различают гомологические и гетерологические противовирусные вакцины.

Гомологические вакцины готовят из того вида вируса, против которого предполагается создать иммунитет, например, вакцины против вирусной диареи, чумы крупного рогатого скота, бешенства и др. Большинство вирусных вакцин — гомологические.

Гетерологические вакцины готовят из вирусов другого вида, но имеющих в своем составе сходные антигены и обладающих перекрестной иммуногенностью. Например, вакцину против оспы кур готовят из вируса оспы голубей, вирус герпеса индеек используют для защиты кур от болезни Марека, вирус кори — для защиты собак от чумы плотоядных и т. д.

В зависимости от количества типов или видов возбудителей, включенных в состав вакцины, различают моновалентные, поливалентные, ассоциированные и смешанные вакцины.

Моновалентные вакцины содержат антигены одного типа (вида) вируса.

Поливалентные вакцины (бивалентные, трехвалентные и т. д.) готовят из нескольких типов одного вируса. Например, трехвалентную противоящурную вакцину получают из трех типов вируса ящура — А, О и С.

Ассоциированные вакцины содержат антигены возбудителей разных видов, например, вакцина «Бивак» — против инфекционного ринотрахеита и парагриппа-3 крупного рогатого скота, «Тетрапак» — против чумы, аденовироза, инфекционного гепатита и парвовирусного энтерита собак.

Смешанные вакцины представляют собой смесь вирусных и бактерийных антигенов, например, вакцина против чумы плотоядных, ботулизма и вирусного энтерита собак.

В зависимости от жизнеспособности (способности к репродукции) вируса, входящего в состав вакцины, все противовирусные вакцины подразделяют на живые и инактивированные.

Живые вакцины содержат живые селекционированные ослабленные (аттенуированные) штаммы вирусов.

Инактивированные вакцины содержат инактивированные штаммы вирусов. Чаще для этой цели используют эпизоотические штаммы, которые инактивируют (обезвреживают) физическими или химическими методами.

Все вакцинные препараты можно разделить на две большие группы: цельновирионные и компонентные. К цельновирионным относятся как живые, так и инактивированные вакцины. К компонентным можно отнести все вакцины, которые не входят в рубрику цельновирионных вакцин, т. е. сплит-вакцины, субъединичные и синтетические вакцины, а также вакцины, полученные генно — инженерными методами.

Вакцина

Вакцина — медицинский препарат, предназначенный для создания иммунитета к инфекционным болезням. Классификации вакцин: 1.Живые вакцины  — препараты, действующим началом в которых являются ослабленные тем или иным способом, потерявшие свою вирулентность, но сохранившие специфическую антигенность штаммы патогенных бактерий. Примером таких вакцин являются БЦЖ и вакцина против натуральной оспы человека, в качестве которой используется непатогенный для человека вирус оспы коров. 2.Инактивированные (убитые) вакцины – препараты, в качестве действующего начала включающие убитые химическим или физическим  способом культуры патогенных вирусов или бактерий, (клеточные, вирионные) или же извлечённые из патогенных микробов комплексы антигенов, содержащие в своём составе проективные антигены (субклеточные, субвирионные вакцины). В препараты иногда добавляют консерванты и адъюванты. 3.Молекулярные вакцины – в них антиген находится в молекулярной форме или даже в виде фрагментов его молекул, определяющих специфичность т. е. в виде эпитопов, детерминант. Корпускулярные вакцины – содержащие в своем составе протективный антиген 3.Анатоксины относятся к числу наиболее эффективных препаратов. Принцип получения – токсин соответствующей бактерии в молекулярном виде превращают в нетоксичную, но сохранившую свою антигенную специфичность форму путем воздействия 0.4% формальдегида при 37t в течение 3-4 недель, далее анатоксин концентрируют, очищают, добавляют адъюванты. 4.Синтетические вакцины. Молекулы эпитопов сами по себе не обладают высокой иммуногенностью для повышения их антигенных свойств эти молекулы сшиваются с полимерным крупномолекулярным безвредным веществом, иногда добавляют адъюванты. 5.Ассоциированные вакцины – препараты, включающие несколько разнородных антигенов.

Типы вакцинных препаратов, их преимущества и недостатки

Для иммунопрофилактики инфекционных болезней разработано 6 типов вакцин. 1. Живые (ослабленные, или аттенуированные) вакцины состоят из жизнеспособных микробов, являющихся возбудителями тех или иных инфекционных болезней человека. Несомненным преимуществом этих вакцин является сохранение полного антигенного набора патогена, благодаря чему достигается наиболее длительное состояние невосприимчивости, по сравнению с результатами использования вакцин других типов. Однако длительность иммунной памяти после применения живых вакцин всё же ниже, нежели после перенесённой инфекционной болезни. Обычно для вакцинации используют штаммы с ослабленной вирулентностью, либо лишённые вирулентных свойств, но полностью сохранившие иммуногенные свойства. Примерами живых вакцин являются таковые против туберкулёза (БЦЖ), брюшного тифа, полиомиелита (Сэбина), жёлтой лихорадки, кори, краснухи, паротита, ветряной оспы. Несмотря на наиболее выраженный вакцинирующий эффект, использование живых вакцин сопряжено с повышенным риском индукции нарушений здоровья человека. Это наиболее реактогенные вакцины, так как при их применении наблюдается самое большое количество осложнений. Транзиторная гипертермия, эпилепсия, энцефалопатия, синдром Гийена-Барре, рассеянный энцефаломиелит, инфекционная болезнь, вызванная вакцинным штаммом, – вот неполный перечень возможных негативных последствий вакцинации живыми вакцинами. Поэтому при проведении таких иммунопрофилактических мероприятий необходимо тщательное выявление пациентов, которым временно или пожизненно противопоказана вакцинация. В первую очередь, речь идёт о людях, страдающих иммунодефицитными заболеваниями, у которых может развиться инфекционная болезнь, вызванная вакцинным штаммом. Например, генерализованная БЦЖ-инфекция развивается у детей с дефектами клеточного иммунитета, а вакцин-ассоциированный полиомиелит – у пациентов с гипоиммуноглобулинемией. Вакцинация иммунопрофилактическими препаратами, содержащими живого возбудителя, может стать причиной тяжёлой инвалидности или даже смерти пациентов с наследственными (первичными) иммунодефицитными болезнями. Необходимо не только проведение текущего клинического осмотра больного, но и сбор иммунологического анамнеза для выявления скрининговых клинико-анамнестических критериев иммунодефицитных болезней. При наличии таковых пациенту следует отложить вакцинацию и назначить иммунологическое обследование. 2. Убитые (инактивированные) вакцины состоят из нежизнеспособных микробов. Для приготовления таких вакцин патогенные микроорганизмы убивают либо термической обработкой, либо воздействием различных химических агентов (например, формалином). В качестве антигенов можно использовать как цельные тела микроорганизмов (противочумная вакцина, вакцина Солка против полиомиелита), так и отдельные компоненты возбудителя (полисахаридная пневмококковая вакцина) и иммунологически активные фракции (вакцина против гепатита В). При использовании таких вакцин нет угрозы возникновения инфекционных болезней, вызванных вакцинным штаммом, однако частота аутоиммунных и токсических осложнений также высока. Длительность иммунной памяти после введения таких вакцинных препаратов несколько ниже, чем при использовании живых вакцин, но довольно велика. 3. Компонентные, или субъединичные вакцины состоят из отдельных антигенов микроорганизмов, способных индуцировать протективный иммунитет, т.е. эффективную иммунную память на определённый срок. Существует 3 типа таких вакцин. Первые состоят из отдельных компонентов морфологических структур патогена (например, полисахариды Streptococcus pneumonie, Neisseria meningitidіs и Haemophilus influenzae; HBs-антиген вируса гепатита В и др.). Вторые представлены анатоксинами – модифицированными токсинами патогенных микроорганизмов, утратившими биологическую активность, но сохранившие иммуногенные свойства (вакцины против дифтерии, столбняка и др.). За счёт таких вакцин достигается не противомикробный, а антитоксический иммунитет. Эти препараты можно использовать для профилактики тех инфекционных болезней, при которых основные клинические симптомы связаны именно с биологическими эффектами экзотоксина возбудителя. И, наконец, субъединичные вакцины третьего типа состоят из двух компонентов – антигенов микроорганизма и анатоксина (например, Haemophilus influenzae и дифтерийный анатоксин). Такие вакцины называются конъюгированными. В таких случаях одновременно формируется как антимикробный, так и антитоксический иммунитет. Субъединичные вакцины менее реактогенны, нежели живые и убитые, хотя и они могут вызывать ряд осложнений, например, патологические аутоиммунные реакции. Иммунизирующий эффект таких препаратов гораздо ниже, поскольку формируется невосприимчивость только к какому-то одному антигену возбудителя. Иногда вместо иммунизации достигается противоположный результат – формирование иммунной толерантности к вводимому антигену, что может обусловить более тяжёлое протекание инфекционной болезни при естественном заражении микроорганизмом. Основная причина формирования толерантности, по-видимому, состоит, в недостаточной молекулярной массе, а также – в ограниченной биологической активности введённого антигена, который ведёт себя как химическое вещество, а не как живой организм. Однако вакцины на основе анатоксинов зарекомендовали себя достаточно хорошо, хотя длительность иммунной памяти при их использовании сравнительно коротка. Например, после введения дифтерийного анатоксина она достигает, в среднем, 5 лет. По-видимому, анатоксины – наиболее удачные иммунопрофилактические препараты этого типа. 4. Рекомбинантные вакцины получают путём внедрения антигенов патогенного микроорганизма в геном условно-патогенного или даже сапрофитного. Широкое применение таких вакцин ограничено возможной патогенностью самого носителя для больных с иммунодефицитными заболеваниями. Такие препараты находятся на стадии разработки. 5. Синтетические олигопептидные вакцины состоят из коротких аминокислотных последовательностей, соответствующих иммуногенным пептидам болезнетворных микроорганизмов. Созданию таких вакцин способствовало открытие факта, что Т-хелперы распознают не весь антиген, а только его иммуногенные пептиды, выделенные благодаря переваривающей активности антигенпрезентирующих клеток. Однако отсутствие фазы внутриклеточного переваривания приводит к утрате иммуногенных свойств олигопептидных вакцин у некоторых пациентов. Кроме того, на сегодняшний день отсутствует полная информация о составе иммуногенных пептидов при различных инфекционных болезнях. Это ограничивает применение синтетических олигопептидных вакцин. 6. Антиидиотипические вакцины могут использоваться в том случае, когда нативный антиген не пригоден для введения. Одним примером служат полисахариды (гаптены, которые самостоятельно не индуцируют иммунный ответ), другим – липид А (компонент липополисахарида бактерий, т.е. очень токсичное вещество). В состав таких препаратов входят антиидиотипические антитела против вариабельных участков специфических к данному антигену антител. Введение таких иммуноглобулинов вызывает продукцию ещё одних антиидиотипических антител, которые идентичны по своей специфичности антителам против антигена. Кроме того, различают моно- и поливалентные вакцины. В первом случае в состав вакцинного препарата входят антигены только одного возбудителя, во втором – сразу нескольких. Чем больше компонентов различных микробов входят в вакцину, тем меньше будет выражен иммунизирующий эффект по отношению к каждому из них. Поэтому создание поливалентных вакцин направлено не столько на повышение иммунизирующего эффекта последних, сколько на создание условий для расширения спектра микроорганизмов, против которых возможно проведение иммунопрофилактики для каждого человека. Краткий перечень вакцин, используемых для профилактики некоторых инфекционных заболеваний, приведён в таблице 33.

45. Вакцины, требования к вакцинам. Виды вакцин, характеристика, методы приготовления. Новые подходы к созданию вакцин.

требования к вакцинам.

•Безопасность- наиболее важное свойство вакцины, тщательно исследуется и контролируется в

процессе производства и применения вакцин. Вакцина является безопасной, если при введении людям

не вызывает развитие серьезных осложнений и заболеваний;

•Протективность — способность индуцировать специфическую защиту организма против

определенного инфекционного заболевания;

•Длительность сохранения протективности;

•Стимуляция образования нейтрализующих антител;

•Стимуляция эффекторных Т-лимфоцитов;

•Длительность сохранения иммунологической памяти;

•Низкая стоимость;

•Биологическая стабильность при транспортировке и хранении;

•Низкая реактогенность;

•Простота введения.

Виды вакцин:

Живые вакцины изготовляют на основе ослабленных штаммов микроорганизма с генетически закрепленной авирулентностью. Вакцинный штамм, после введения, размножается в организме привитого и вызывает вакцинальный инфекционный процесс. У большинства привитых вакцинальная инфекция протекает без выраженных клинических симптомов и приводит к формированию, как правило, стойкого иммунитета. Примером живых вакцин могут служить вакцины для профилактики полиомиелита (живая вакцина Сэбина), туберкулеза (БЦЖ), эпидемического паротита, чумы, сибирской язвы, туляремии. Живые вакцины выпускаются в лиофилизированном (порошкообразном)

виде (кроме полиомиелитной). Убитые вакцины представляют собой бактерии или вирусы, инактивированные химическим (формалин, спирт, фенол) или физическим (тепло, ультрафиолетовое облучение) воздействием. Примерами инактивированных вакцин являются: коклюшная (как компонент АКДС), лептоспирозная, гриппозные цельновирионные, вакцина против клещевого энцефалита, против инактивированная полиовакцина (вакцина Солка).

Химические вакцины получают путем механического или химического разрушения микроорганизмов и выделения протективных, т. е. вызывающих формирование защитных иммунных реакций, антигенов.Например вакцина против брюшного тифа, вакцина против менингококковой инфекции.

Анатоксины. Эти препараты представляют собой бактериальные токсины, обезвреженные

воздействием формалина при повышенной температуре (400) в течение 30 дней с последующейочисткой и концентрацией. Анатоксины сорбируют на различных минеральных адсорбентах, например на гидроокиси алюминия (адъюванты). Адсорбция значительно повышает иммуногенную активностьанатоксинов. Это связано как с созданием «депо» препарата в месте введения, так и с адъювантным

действием сорбента, вызывающего местное воспаление, усиление плазмоцитарной реакции врегионарных лимфатических узлах Анатоксины применяют для профилактики столбняка, дифтерии, стафилокакковых инфекций.

Синтетические вакцины представляют собой искусственно созданные антигенные детерминанты микроорганизмов.

В состав ассоциированных вакцин входят препараты из предыдущих групп и против несколькихинфекций. Пример: АКДС — состоит из дифтерийного и столбнячного анатоксина, адсорбированных на гидроокиси алюминия и убитой коклюшной вакцины.

Вакцины, полученные методами генной инженерии. Суть метода: гены вирулентного микроорганизма,отвечающий за синтез протективных антигенов, встраивают в геном какого — либо безвредногомикроорганизма, который при культивировании продуцирует и накапливает соответствующий антиген.Примером может служить рекомбинантная вакцина против вирусного гепатита В, вакцина против ротавирусной инфекции.

В перспективе предполагается использовать векторы, в которые встроены не только гены,

контролирующие синтез антигенов возбудителя, но и гены, кодирующие различные медиаторы (белки)иммунного ответа (интерфероны, интерлейкины и т.д

В настоящее время интенсивно разрабатываются вакцины из плазмидных (внеядерных) ДНК,кодирующих антигены возбудителей инфекционных заболеваний. Идея таких вакцин состоит в том,чтобы встроить гены микроорганизма, отвественные за синтез микробного белка, в геном человека.При этом клетки человека ничинают продукцию этого чужеродного для них белка, а иммунная системастанет вырабатывать антитела к нему. Эти антитела и будут нейтрализовать возбудителя в случаепопадания его в организм.

37. Вакцинопрофилактика и вакцинотерапия.

Вакцинопрофилактика – введение препаратов с целью предотвращения развития инфекционных заболеваний.

Вакцинотерапия – введение препаратов лечебными целями.

Вакцинные препараты вводят внутрь, подкожно, внутрикожно, парентерально, интраназально и ингаляционно. Способ введения определяют св-ва препарата. По степени необходимости выделяют плановую вакцинацию и вакцинацию по эпидемиологическим показаниям. Первую проводят в соответствии с регламентированным календарем иммунопрофилактики наиболее распространенных или опасных инфекций. Вакцинацию по эпидемиологическим показаниям проводят для срочного создания иммунитета у лиц, подвергающихся риску развития инфекции, например, у персонала инфекционных больниц, при вспышке инфекционного заболевания в населенном пункте или предполагаемой поездке в эндемичные районы (желтая лихорадка, гепатит А)

38. Живая вакцина: получение, требование к вакцинным штаммам, достоинства и недостатки.

Получение:

Получают при использовании двух основных принципов:

Принцип Дженнера – использование штаммов возбудителей инфекционных заболеваний животных генетически близкородственных сходным болезням человека. На основе этого принципа были получены осповакцина и вакцина БЦЖ. Протективные агенты (иммуногены) этих микробов оказались практически идентичными.

Принцип Пастера – получение вакцин из искусственно ослабленных (аттенуированных) вирулентных штаммов возбудителей инфекции человека. Метод основан на селекции штаммов с измененными наследственными признаками. Эти штаммы отличабтся от исходных тем, что они утратили вирулентность, но сохранили иммуногенные св-ва. Так была получена Пастером вакцина против бешенства, позднее вакцина против сибирской язвы, чумы, туляремии.

Применяют следующие методы получения аттенуированных штаммов патогенных микробов:

  • Изменение вирулентности возбудителя путем воздействия на него неблагоприятных факторов внешней среды с последующей селекцией

  • Отбор авирулентных штаммов из существующих коллекций микробов.

Требования к вакцинным штаммам:

селекция спотанных мутантов с пониженной вирулентностью и сохраненными иммуногенными свойствами путем культивирования их в определенных условиях или пассирования через организм устойчивых к донной инфекции животных.

Достоинства – полностью сохраненный набор Аг возбудителя, что обеспечивает развитие длительной невосприимчивости даже после однократной иммунизации.

Недостатки – риск развития манифестной инфекции в результате снижения аттенуации вакцинного штамма.

39. Убитые вакцины. Принцип получения. Химические вакцины.

Убитые вакцины.

Производят из типичных по антигенному строению высоковерулентных штаммов возбудителей инфекции. Бактериальные штаммы выращивают на плотных или жидких питательных средах (штаммы вирусов – в организме животных или культурных клетках).

нагревание, обработка фармалином, ацетоном, спиртом обеспечивает надежную инактивацию возбудителей и минимальное повреждение Аг.

Проводится производственный контроль на стерильность, безвредность, реактогенность, иммуногенность. Вакцины стерильно разливаются в ампулы, затем высушиваются в вакууме при низкой температуре.

Высушивание вакцин обеспечивает высокую стабильность препаратов (хранение 2 и более года) и снижает концентрацию некоторых примесей (формалина, фенола).

Хранятся вакцины при температуре 4-8 градусов. Иммунизация убитыми вакцинами приводит к созданию активного антимикробного иммунитета.

Оценка эффиктивности иммунизации проводится в эпидемиологических опытах путем сравнения частоты заболеваемости у привитых и непривитых людей, а также по уровню защитных Ат, определяемых у привитых. Эффективность данных вакцин в целом ниже, по сравнению с живыми, но при повторном введении они создают достаточно стойкий иммунитет, наиболее частый способ введения – парентеральный.

Химические вакцины

Состоят из Аг, полученных из микроорганизмов различными, преимущественно химическими методами. Для этого применяют и кислотный гидролиз, экстрагироание трихлоруксусной кислотой. Однако наиболее часто используется метод ферментативного переваривания по Райстрику и Топли.

Этапы приготовления:

  • Выращивание культуры вакцинного штамма в жидкой питательной среде с последующим разрушением бактерий панкреатином и суперцентрифугированием для удаления корпускулярных элементов.

  • Осаждение спиртом иммуногена из надосадочной жидкости и суперцентрифугирование для осождения Аг

  • Лиофильная сушка осажденного полного Аг с добавление консерванта (0,3% р-р фенола) и сорбента (гидроокись алюминия).

Химические вакцины содержат примесь отдельных органических соединений, состоящих из белков, полисахаридов и липидов. В некоторых случаях используются рибосомальные фракции микробов.

Основной принцип получения данных вакцин заключается в выделении и очистке протективных Аг, обеспечивающих развитие надежного иммунитета.

Разновидность хим. вакцин являются расщепленные и субъединичные вакцины. В расщепленных вакцинах содержатся разъедененные на фракции – внутренние и наружние белки вируса. Субъединичные вакцины содержат только наружные белки вируса, остальные Аг удалены.

Хим вакцины обладают слабой реактогенностью. Могут вводится в больших дозах и многократно. Применение адъювантов, как усилителей иммунного ответа, повышает эффективность вакцин. Хим. Вакцины, особенно сухие устойчивы к влиянию внешней среды, хорошо стандартизируются и могут применятся в различных ассоциациях, направленных на одновременно против ряда инфекций.

Вакцинопрофилактика, типы вакцин и их классификация. Адъюванты и их применение

Иммунобиотехнология основана на реакции антиген (АГ)- антитело (АТ). В

качестве примера иммунобиотехнологического генного процесса может

служить получение вируса полиомиелита из культуры ткани живого человека

для получения вакцины.

Биопродукты (вакцины) должны проходить

тщательную проверку на безопасность и эффективность. На эту стадию проверки

вакцины уходит обычно около двух третей (2/3) стоимости вакцины.

 

Вакцины – это препараты, приготовленные из убитых или ослабленных

болезнетворных микроорганизмов или их токсинов. Как известно, вакцины

применяются с целью профилактики или лечения. Введение вакцин вызывает

иммунную реакцию, за которой следует приобретение устойчивости организма

человека или животного к патогенным микроорганизмам.

 

Если рассмотреть состав вакцины, то в них входят:

— действующий компонент, представляющие специфические антигены,

консервант, который определяет стабильность вакцины при ее хранении,

стабилизатор, который продлевает срок годности вакцины,

— полимерный носитель, который повышает иммуногенность антигена (АГ).

Под иммуногенностью понимают свойство антигена вызывать иммунный

ответ.

В роли антигена можно использовать:

1. живые ослабевшие микроорганизмы

2. неживые, убитые микробные клетки или вирусные частицы

3. антигенные структуры, извлеченные из микроорганизма

4. продукты жизнедеятельности микроорганизмов, в качестве которых

используют токсины, как вторичные метаболиты.

 

Классификация вакцин в соответствии с природой специфического антигена:

• живые

• неживые

• комбинированные.

Живые вакцины получают

а) из естественных штаммов микроорганизмов с ослабленной

вирулентностью для человека, но содержащий полный набор антигенов

(в качестве примера можно привести вирус оспы).

б) из искусственных ослабленных штаммов.

в) часть вакцин получают генноинженерным способом. Для получения

таких вакцин используют штамм, несущий ген чужеродного антигена,

например, вирус оспы со встроенным антигеном гепатита В.

2. Неживые вакцины – это:

а) молекулярные и химические вакцины. При этом молекулярные вакцины

конструируют на основе специфического антигена, который находится в

молекулярном виде. Эти вакцины могут быть получены и путем химического

синтеза или биосинтеза. Примерами молекулярных вакцин являются

анатоксины. Анатоксины – это бактериальный экзотоксин, потерявший

токсичность в результате длительного воздействия формалина, но сохранивший

антигенные свойства. Это дифтерийный токсин, столбнячный токсин,

Бутулинический токсин.

б) корпускулярные вакцины, которые получают из целой микробной

клетки, которая инактивизирована температурой, ультрафиолетовым облучением

или химическими методами, например, спиртом.

87

3. Комбинированные вакцины.Они комбинируются из отдельных вакцин,

превращаясь при этом в поливакцины, которые способны иммунизировать

сразу от нескольких инфекций. В качестве примера можно назвать поливакцину

АКДС, содержащую дифтерийный и столбнячный анатоксины и коклюшные

корпускулярные антигены. Эта вакцина, как известно, широко применяется в

детской практике.

 

Рассмотрим подробнее токсины с точки зрения их, как продуктов

жизнедеятельности микроорганизмов.

1 группа токсинов – это экзотоксины:

экзотоксины – это белковые вещества, выделяемые клетками бактерий во

внешнюю среду. Они в значительной степени определяют болезнетворность

микроорганизмов. Экзотоксины в своем строении имеют два центра. Один из

них фиксирует молекулу токсина на соответствующем клеточном рецепторе,

второй – токсический фрагмент – проникает внутрь клетки, где блокирует

жизненно важные метаболические реакции. Экзотоксины могут быть

термолабильны или термостабильны. Известно, что под действием формалина

они теряют токсичность, но сохраняют при этом иммуногенные свойства –

такие токсины называются анатоксинами.

2 группа токсинов – это эндотоксины. Эндотоксины являются структурными

компонентами бактерий, представляя липополисахариды клеточной стенки

грамотрицательных бактерий. Эндотоксины менее токсичны, разрушаются при

нагревании до 60-800 С в течении 20 минут. Эндотоксины выходят из клетки

бактерий при ее разложении. При введении в организм эндотоксины вызывают

иммунный ответ. Получают сыворотку путем иммунизации животных чистым

эндотоксином. Однако эндотоксины относительно слабый иммуноген и

сыворотка не может обладать высокой антитоксической активностью.

Иммунобиотехнологические препараты:

Вакцины вводятся в организм для профилактики. При такой прививке

активизируется иммунная система, вырабатываются антитела лимфоцитными

клетками, которые сохраняют в памяти эту способность и при повторном

попадании этого же антигена образуют комплекс антиген-антитело, который в

свою очередь узнается организмом и утилизируется.

Вакцина для профилактики полиомиелита представляет поливалентный

препарат из трех ослабленных штаммов вируса полиомиелита.

В тоже время половина из всех применяемых в настоящее время вакцин

относится к живым вакцинам разного происхождения.

Это живые вакцины бактерийного происхождения, применяемые для

профилактики сибирской язвы, чумы, туберкулеза и др.

Это живые вакцины вирусного происхождения, применяемые для профилактики

оспы, кори, гриппа, краснухи, полиомиелита и др.

Неживые вакцины используются для профилактики

а. бактерийных инфекций, таких как:

коклюш, дизентерия, холера, брюшной тиф, сыпной тиф.

б. вирусных инфекций:герпес.

 

Примеры анатоксинов:

дифтерийный, столбнячный, газовой гангрены, бутулимический.

Классификация вакцин может быть представлена и по виду лекарственной

формы:

— иньекционные (жидкие)

-пероральные (таблетки, капсулы, драже)

— ингаляционные (аэрозоли).

Получение вакцин

1. вакцины живые

1.1.живые бактерийные вакцины. Этот тип вакцин получается наиболее

просто. В ферментере выращиваются чистые ослабленные культуры.

Существует 4 основных стадии получения живых бактерийных вакцин:

— выращивание

— стабилизация

— стандартизация

— лиофильное высушивание.

В этих случаях штаммы продуцентов выращиваются на жидкой

питательной среде в ферментере вместимостью до 1-2 м3.

1.2. живые вирусные вакцины. В этом случае вакцины получают путем

культивирования штамма в курином эмбрионе или в культурах животных

клеток.

2. молекулярные вакцины. Чтобы иметь представление об этом типе

вакцин, надо знать, что в этом случае из микробной массы выделяют

специфический антиген или экзотоксины. Их очищают, концентрируют.

Затем токсины обезвреживают и получают анатоксины. Очень важно, что

специфический антиген может быть также получен путем химического или

биохимического синтеза.

89

3. корпускулярные вакцины. Их можно получить из микробных клеток,

которые предварительно культивируют в ферментере. Затем микробные

клетки инактивируют температурой, или ультрафиолетовым облучением

(УФ), или химическими веществами (фенолами или спиртом).

Сыворотки

Применение сывороток

1. Сыворотки широко используются в случаях профилактики и лечения

инфекционных заболеваний.

2. Сыворотки также используются при отравлении ядами микробов или

животных – при столбняке, ботулизме дифтерии (для инактивации

экзотоксинов), применяются сыворотки и от яда кобры, гадюки и др.

3. Сыворотки могут быть использованы и для диагностических целей, для

создания различных диагностических наборов ( например в тестах на

определение беременности). В этом случае антитела используются в

реакциях образования комплексов с антигенами (антиген (АГ) – антитело

(АТ), когда происходит подтверждение наличия соответствующих

антигенов, что может быть использовано в различных реакциях.

Иммунобиологические препараты.

Одним из важнейших направлений прикладной иммунологии является создание эффективных препаратов для иммунопрофилактики и иммунотерапии инфекционных заболеваний.

Иммунотерапия – введение с лечебными целями иммунобиологических препаратов (например, лечебных вакцин, сывороток, иммуноглобулинов, интерферонов, цитокинов).

Иммунопрофилактика – введение иммунобиологических препаратов с целью предотвращения развития инфекционных заболеваний (например, вакцин, сывороток).

Все средства, применяемые для воздействия на иммунную систему, известны как иммунобиологические препараты. К ним относят различные по природе и происхождению вещества.

Виды иммунобиологических препаратов:

1. Профилактические и лечебные препараты микробного происхождения (например, вакцины, бактериофаги, эубиотики, анатоксины).

2. Лечебные препараты (напр., иммуноглобулины, цитокины)

3. Диагностические иммунные препараты (напр., антисыворотки), а также диагностические бактериофаги и аллергены.

4. Иммуномодуляторы (различные синтетические препараты, биостимуляторы природного происхождения).

Иммунобиологические препараты могут оказывать различное действие на организм человека:

1. Активное действие – препараты индуцируют развитие иммунных реакций (напр., вакцинные препараты).

2. Пассивное действие – эффекты препаратов, представляющих собой эффекторные продукты иммунокомпетентных клеток (напр., иммуноглобулины, цитокины, сыворотки).

3. Специфическое действие проявляют препараты, обеспечивающие защиту от конкретного возбудителя (напр., противокоревая вакцина, столбнячный анатоксин).

4. Неспецифическое действие оказывают препараты, неизбирательно стимулирующие функции иммунной системы (напр., иммуномодуляторы, многие биостимуляторы).

Вакцины.

Название “вакцины” было дано Л.Пастером всем прививочным препаратам, полученным из микроорганизмов и их продуктов. Первая вакцина была получена Э.Дженнером. Она содержала живой вирус коровьей оспы, идентичный по антигенным свойствам вирусу натуральной оспы человека, но маловирулентный для человека. Т.о. первый вакцинный штамм был заимствован из природы. Заслуга Л.Пастера состоит в разработке принципов направленного получения вакцинных штаммов и создания вакцин против бешенства и сибирской язвы. Он открыл феномен аттенуации (ослабления) – селекции штаммов с пониженной вирулентностью и сохраненными иммуногенными свойствами путем культивирования их в определенных условиях или пассирования через организм устойчивых к данной инфекции животных.

В настоящее время выделяется раздел иммунопрофилактики, занимающийся разработкой и использованием вакцин – вакцинология. Благодаря вакцинациипобеждены многие опасные для всего человечества эпидемические болезни – натуральная оспа (ликвидирована), полиомиелит, дифтерия (практически ликвидированы), корь, коклюш, столбняк, бруцеллез, туляремия, сибирская язва, клещевой энцефалит, бешенство (снижена эпидемическая опасность).

В качестве антигенов в вакцинных препаратах выступают:

1. цельные микробные тела (живые или убитые)

2. отдельные антигены микроорганизмов

3. токсины микроорганизмов

4. искусственно созданные антигены микроорганизмов

5. антигены, полученные методом генной инженерии.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *